NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

NC STATE UNIVERSITY

ITNG NCTest Capacity
Testing

Architecture, Methodology, and
Results

1 0f 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

Executive Summary

NCSU’s Institute for Next Generation IT Systems (ITng) was contracted by the Center for Urban
Affairs and Community Service to do a capacity test of the NCTest web application. The goal of
the testing is to determine if NCTest can support 250,000 concurrent users. NCTest is a modern
Asynchronous Javascript and XML (AJAX) web application similar to gmail or Google calendar.
AJAX makes testing challenging since the test equipment must maintain state during the test

as opposed to a simple request/response scenario found with vintage HTML/HTTP based web
applications.

Given this complexity, each simulated user in the test infrastructure must run a browser to
interact with the AJAX web application. The need to run all users in separate browsers implies
that many RAM and processing resources are required to simulate 250,000 users. To mitigate
this, the clients were accelerated and focused on a small portion of the NCTest infrastructure.
Assuming linear scaling, results from this scenario can be multiplied over the entire NCTest
infrastructure to estimate it’s ability to support 250,000 users.

It is estimated that 250,000 concurrent users will consume about 10% of the NCTest
infrastructure with the caveat that the setup section of the NCTest app should be staged over a
30 minute period due to its network requirements. This 30 minute period can be reduced since
the setup loading requirements have been reduced, but this change occurred after testing was
complete.

Please read below for more details on the testing methodology, findings and results.

2 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results

Table of Contents

Executive Summary
Background
Design Principles
Architecture
Components
Selenium
Firefox
Xvfb
Fedora 17

Python

Topology
Automation

User Parameters
Credentials
Wait Times
Metrics
Scaling
Results
Configuration
Client-side Setup
Selenium
OS Tuning

Hardware Tuning
Effective Number of Emulated Users

Workflow Workarounds
Server-side Setup

Hardware Configuration
Software Configuration
Findings and Conclusions

Setup Phase of Testing
Question and Answer Phase of Testing
Cost Feasibility of Test Methodology
Appendix A - Time On Test Histogram Data
Appendix B - Test Code
fabfile.py
run_many.py
nctest.py

11/1/2012

3 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

Background

ITng Services was asked by the Center for Urban Affairs and Community Service (CUACS)
to prove NCTest’s ability to support 250,000 concurrent users. This document describes the
architecture and methodology necessary to implement the test.

NCTest is an AJAX web app developed with the Google Web Toolkit (GWT) development
environment.

Design Principles

This testing architecture is guided by the following principles:

e Allow reuse when possible. After this test is complete, all testing scripts and
configuration will be delivered to CUACS for developing future tests.
Use well-known and actively developed testing frameworks and libraries.
Allow the system to scale as testing needs scale.
Use systems that use fewer RAM and CPU resources per simulated user while
maintaining test quality.
Mimic user characteristics as closely as possible.
Use the simplest solution to achieve the desired goal.

Architecture

Components

The testing architecture will rely on the following components:

Selenium (seleniumhq.org)

Firefox browser (https://www.mozilla.org/en-US/firefox/new/)
Xvfb (https://en.wikipedia.org/wiki/Xvfb)

Fedora 17 (fedoraproject.org)

python programming language (http://www.python.org/)

The following sections list details of each of the components.

Selenium

Selenium is a set of linux libraries and a python package that allows automation of browser
operations which in turn exercise web application functions. Selenium is programmed by writing

4 of 35

https://en.wikipedia.org/wiki/Xvfb),
https://en.wikipedia.org/wiki/Xvfb),
https://en.wikipedia.org/wiki/Xvfb),
https://en.wikipedia.org/wiki/Xvfb),
https://en.wikipedia.org/wiki/Xvfb),
https://en.wikipedia.org/wiki/Xvfb),
https://en.wikipedia.org/wiki/Xvfb),
https://en.wikipedia.org/wiki/Xvfb),
https://en.wikipedia.org/wiki/Xvfb),
https://en.wikipedia.org/wiki/Xvfb),
https://en.wikipedia.org/wiki/Xvfb),
http://www.python.org/)
http://www.python.org/)
http://www.python.org/)
http://www.python.org/)
http://www.python.org/)
http://www.python.org/)
http://www.python.org/)
http://www.python.org/)

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012
Python code. Other programming languages are supported too, but python is currently the
language of choice of ITng services.

Firefox

The NCTest web application supports Firefox (as does Selenium). Firefox was chosen as

the browser for all NCTest capacity tests. Install the selenium IDE add-on on a development
machine to automate the recording of selenium scripts. This automates a lot of the work in
automating a web app work flow. The resulting script is almost guaranteed not to work, but it is
a good start and saves a lot of coding by hand.

Xvfb

Firefox requires a display to run. However, the scale of this test precludes the use of physical
displays. Instead, Xvfb (x-windows virtual frame buffer) is used to create a virtual display used
by Firefox. Beyond the concept of creating a virtual display, Xvfb also has several interesting
features such as screen capture in the event of an error.

Fedora 17

Fedora 17, currently the latest release of the Fedora Linux distribution, was chosen as the OS
for the client emulation of web users. Other linux distributions are equally as viable, but ITng
Services is most familiar with Fedora.

The following packages are loaded on a Fedora installation with no graphical desktop. Each
package is listed in the form of a command to install the package.

yum install screen (for convenience)

yum install Xvfb (virtual frame buffer for headless operation of firefox)
yum install firefox

yum install selenium-core

yum install selenium-server

yum update (to make sure everything is up to date)

ook wd -~

Python

As mentioned above, Python is the programming language for all automation of the testing. The
following is a list of python packages necessary for the testing. Each package is listed in the
form of a command to install the package.

1. easy_install pip

2. pip install selenium
3. yum install gcc; pip install fabric (only needed from the controller machine)

5 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

Topology

The following diagram describes the topology of the test.

/ Student Emulation \

Infrastructure
machine 1 / \
fedora 17

Xvfb

firefox | ... | firefox
1 n

selenium

python

< > NCTest
Infrastructure

machine m

fedora 17

Xvfb

firefox firefox

1 n

= NI
\S =/

Several firefox instances are driven with Selenium in a virtual frame buffer in an installation of
Fedora 17. This structure is repeated in other machines until the desired number of concurrent
firefox instances are achieved.

Automation

A script will be called on all machines in the topology. This script will take the following
parameters:

e start user#
e end user#
e test start time (in epoch)

6 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012
These scripts may be called via ssh from a ‘control’ machine. The scripts must be called in
ample time to create the randomized wait times (see wait times) and start all processes/threads.
These processes will then wait for their start times to begin. The start times will be randomized
somewhat within a two minute window so as not to synchronize all calls to the infrastructure.
The user number are described is more detail below (see credentials).

User Parameters

The following sections will describe parameters necessary for characterizing the emulated
users.

Credentials

The credentials for a test are as follows:

e userid for teacher
e password for teacher
e student name

The idea is a teacher will log into the NCTest application on a group of machines in a testing lab
and then select a student for each machine. The test automation script will need to accomplish
the same authentication before taking the test. The 250,000 concurrent user goal for testing
refers to 250,000 students.

For the sake of the test, it will be assumed that a teacher has 100 students. For 250,000
students, 2,500 teachers are required. The following table shows the contents of a configuration
file for users that each test script will read from. This file is depicted as a table, but will most
likely be represented as a comma separated value (CSV) file.

This table shows how the user number, userid, password, and student parameters are laid out.
This configuration must be mirrored in the NCTest infrastructure and is the responsibility of
NCTest personnel.

User Number

Userid

Password

Student Number

100

100

101

7 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results

11/1/2012

250000

2500

2500

100

Wait Times

Some students complete tests faster than others. To emulate this, test completion data is used
to create a stochastic model. This model is used to determine randomized wait times between

test questions.

The following is a procedure to determine the wait times between test questions in the user
work flow. This procedure will be run once during the setup phase for each emulated user on

each machine.

1. Determine overall time to take the test (Tmfru’)

Appendix A lists ‘time on test’ histogram data found in a document titled ‘Test Time
Statistics for the 2012 NC Field Tests - 2011-12’. Using this data, the startup script will

do the following:

a. getarandom number between 0 and 1 (inclusive) over a uniform distribution
b. arow in the histogram is selected by comparing the random number with the

cumulative % column
c. the Time Bin is found from the selected row

d. the middle point of the bin ((max time - min time) / 2) is used for the total test time

(T _total)

2. Determine time between questions in a test (T'f”"-"“”“)

For a given 'student’, the wait time between test questions is calculated by:

Tr}_'rrf stion = Tr”mj /# Q'U.(?Si‘u’.-f)??.-_‘i

Note the following characteristics of this procedure:

e This procedure calculates a minimal amount of random numbers. Random number
calculation can be computationally heavy and could consume significant amount of

computing resources and time for large numbers of emulated users.

For any given student, the time between all questions is equal.
The actual test completion time for a user will probably be greater than the target

test completion time. This is because the application latency is not considered when
calculating the time between questions.

8 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

Metrics

All metrics will be gathered/sampled from the NCTest infrastructure during the test. The
following is a suggested list of metrics. Gathering of these metrics are the responsibility of
NCTest personnel.

number of concurrent users
cpu utilization

RAM utilization

network utilization

disk I/O

Scaling

The limit to scaling this test beyond the 10,000 users is a function of the web app infrastructure
limits, the limits to how many users can be emulated per machine, the number of machines,
the capacity of the network supporting the emulated users, and the network capacity between
the emulated users and the NCTest infrastructure. This initial test of 10,000 emulated users will
inform many of these unknown limits.

Results

Configuration

Client-side Setup

Selenium

The Selenium scripts (listed) in the nctest.py script in the appendix is the result of much effort
and the details are beyond the scope of this document.

OS Tuning

Both the default number of concurrent processes and number of open files were reached while
attempting to scale up the number of concurrent emulated users. This was fixed by modifying
the /etc/security/limits.conf file with the following lines:

msbrown3 soft nproc 32768
msbrown3 hard nproc 32768
msbrown3 soft nofile 1000000
msbrown3 hard nofile 1000000

9 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012
This modification allows the number of concurrent processes to be as much as 32768 and the
number of open files to be 1M.

Hardware Tuning

Since many firefox instances require over 100MB of RAM for the test, it was assumed that
system RAM would be the limitation for each server used to emulate users. Therefore we
loaded seven IBM Bladecenter HS22 blades with 96GB of RAM. We were able to fit 750
concurrent users in each of these systems.

However, it was determined that CPU was the bottleneck since the delay between questions
was >30sec regardless of the amount of test acceleration (where acceleration is the divisor
of expected wait time between questions). After some experimentation, it was found that 200
concurrent users can run in the blades while barely saturating the CPUs. This resulted in a
consistent 3 seconds delay between test questions.

After determining this limit, RAM from the 7 blades were spread into 12 blades such that each
blade has at least 48GB of RAM.

Effective Number of Emulated Users

Since 2400 users were run at approximately 20 times the pace of the average user described
from the empirical test duration data in the Appendix, we are able to emulate approximately
48,000 concurrent users.

Userids are chosen such that a small portion of the NCTest infrastructure is utilized during
the test. The idea is to measure the percent utilization and then linearly extrapolate to
70% utilization to determine a reasonable number of users that can be supported by the
infrastructure.

Workflow Workarounds

Some of the questions in the test were difficult or impossible to automate using Selenium.
These questions are skipped. This occurred with 2 of the 57 questions in the test (questions 8
and 39) and are documented in the Selenium code. This should have negligible impact on the
findings of the capacity tests.

Server-side Setup

Hardware Configuration

Traffic was managed via a hardware load balancer, with one database server to manage logins,
and one to store student responses. The web traffic was processed using one web server.

Software Configuration

The database software used during the test was MariaDB, while the web server ran Apache-
Tomcat.

10 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

Findings and Conclusions

Setup Phase of Testing

During the 8.5 minute setup phase of the tests, 2400 users generate 8% CPU utilization and
150Mbps network utilization on one web server. Assuming linear scaling and use of the entire
NCTest web infrastructure, accommodating 250,000 users would consume 22% of all web
servers’ CPUs and generate 15.625Gbps inbound on the NCTest network. Since the network
is limited by a single 10Gbps link from the load balancer to the NCSU network, this becomes

a bottleneck. Therefore, a minimal setup window for 250,000 users must be at least 13.28
minutes. To mitigate the risk of over-running the NCTest infrastructure network, we recommend
a 30 minute window for test setup statewide when anticipating a high number of concurrent
users.

Note: Testing was conducted using a model of the NCTest content as it existed during the
2011-12 school year. Since testing completed, modifications to the application have reduced
its overall size, chiefly by reducing the size of the setup load by approximately 1.4 megabytes.
This should yield a margin of additional safety to the conclusions presented in this report. Time
pressures preclude retesting the application to quantify this margin.

Question and Answer Phase of Testing

After scaling the Selenium tests to 200 users per blade over 12 blades while setting the
delay between questions to a minimum (approx 3 seconds), the web server sees a processor
utilization of 8% and the database server experiences a processor utilization of 18%.

The NCTest infrastructure includes 36 web servers and nine database servers. Therefore, this
load consumes minimal amount of the web server infrastructure (0.2%) and approximately 2%
of the database infrastructure. The test load represents approximately 19.2% (48,000) of the
maximum concurrent users (250,000). Assuming linear scaling of the NCTest infrastructure,

it is conceivable that the NCTest application and infrastructure will support at least 250,000
concurrent users under normal circumstances during the question phase of the test while

only consuming 10.4% of the database server infrastructure and 1.04% of the web server
infrastructure.

Cost Feasibility of Test Methodology

To fully automate all 250,000 users using the empirical test duration data in Appendix A, 10
times the amount of hardware is required - 120 IBM Bladecenter HS22 blades with two CPUs
and 48GB of RAM in each. This hardware costs over $750,000 including university discount.
Given the hardware costs, extrapolating capacity with a reduced user set size running at an
accelerated rate while targeting a subset of the full infrastructure is a cost effective method for
determining user capacity.

11 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

12 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results

Appendix A - Time On Test Histogram Data

Time Bin (Minutes)

30-35
35-40
40-45
45-50
50-55
55-60
60-65
65-70
70-75
75-80
80-85
85-90
90-95
95-100
100-105
105-110
110-115
115-120
120-125
125-130
130-135
135-140
140-145
145-150
150-155
155-160
160-165
165-170
170-175
175-180

Frequency

4902
5991
6332
5858
4391
5583
4981
4767
4186
3800
3217
2822
2491
2217
1654
1418
1352
1098
995
846
661
534
474
416
367
267
200
158
112
97

O O O O OO o000 OoOoORFRPr PP REPREPEDNWWWPHS OO0l oy o o) 0 0 0 o

%

.79
.30
L7
.12
.08
.73
.90
.60
.80
.26
.46
.91
.45
.07
.29
.96
.87
.52
.38
.17
.92
.74
.66
.58
.51
.37
.28
.22
.16
.13

Cum Freq
4902
10893
17225
23083
27474
33057
38038
42805
46991
50791
54008
56830
59321
61538
63192
64610
65962
67060
68055
68901
69562
70096
70570
70986
71353
71620
71820
71978
72090
72187

Cum %

6.
15.
23.
31.
38.
45.
52.
59.
65.
70.
74.
78.
82.
85.
87.
89.
91.
92.
94.
95.
96.
97.
97.
98.
98.
99.
99.
99.
99.

100

79
09
86
98
06
79
69
30
10
36
82
73
18
25
54
50
38
90
28
45
36
10
76
34
84
21
49
71
87
.00

11/1/2012

13 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results

Appendix B - Test Code

‘Fabric’ was used to drive processes on all the client machines from an additional machine. All
Fabric interactions were coded in fabfile.py. A ‘run many’ script was called to generate calls to

multiple ‘nctest’ scripts. Python was used for all code and is listed below.

fabfile.py

from _ future import division

import os.pa
import time

th

from copy import copy

from fabric

import api

from fabric.api import env,parallel
from fabric.context managers import hide, show

env.hosts =
'nctestl
'nctest?2
'nctest3
'nctest4
'nctestb
'nctest6
'nctest?
'nctest8
'nctest9

[

.0scar.ncsu

.edu',
.oscar.ncsu.

.0scar.ncsu.
.0scar.ncsu.
.0scar.ncsu.

.0scar.ncsu

.0scar.ncsu

edu',
edu',
edu',
edu',

.edu',
.oscar.ncsu.

edu',

.edu',
.oscar.ncsu.

edu',

'nctestl0.oscar.ncsu.edu’,
'nctestll.oscar.ncsu.edu’,
'nctestl2.oscar.ncsu.edu’',

env.code dir
env.start te

= "/tmp/nctest"

st =1

env.workers per_server = 200

env.xserver

start_port

env.worker chunk_size =

20

Indexed starting at one

First port to start xservers on

20 # Number of workers per xserver

11/1/2012

env.start time = 25 * env.worker chunk size # Seconds from now to start the test in each worker

env.accelerator = 0 # divisor for time between tests (0 for no wait time)

FILES TO_COPY = [
'run many.py',
'nctest.py’',
'watchcmd.sh',

'chromed

river',

'firefox profile/',

'google-chrome.repo',

YUM DEPENDENCIES = [

"vab",
"screen"
"firefox

Fonts required

’
"
’

by firefox, when no other x11 stuff is installed

14 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

"xorg-xll-fonts-Typel",

@Qapi.task
@parallel
def install dependencies():
api.sudo ("yum install -q -y %s" % ' '.join(YUM DEPENDENCIES))

api.sudo("easy install pip")
api.sudo ("pip install selenium")

@Qapi.task
@parallel
def copy code():

wuon

Copies code to hosts in preparation to run a test.

wun

with api.settings(warn_only=True):
api.run("mkdir %s" % env.code dir)
for filename in FILES TO COPY:
api.put(filename, env.code dir)
api.sudo("mv " + env.code dir + "/google-chrome.repo /etc/yum.repos.d/")
api.sudo ("yum install -g -y google-chrome-stable")

api.run ("chmod u+x /tmp/nctest/chromedriver™)

Qapi.task
@parallel
def clean tmp():

wun

Cleans out the /tmp directory.

wun

with api.settings(warn_only=True):
api.run("rm -rf %s" % env.code dir)
api.run("rm -rf /tmp/tmp*")

api.run("rm -rf /tmp/xvfb-run*")

@api.task
@parallel
def run():

with api.settings(warn_only=True) :

api.run("killall Xvfb firefox")
api.run('screen -d -m -S xvfb Xvfb :99'
time.sleep (4)

[IRIR1]

start test = env.start test + env.hosts.index(env.host string) * env.workers per server
xserver port = env.xserver start port

for 1 in xrange (0, env.workers per server, env.worker chunk size):
api.local('ssh {server} "cd {code dir}; xvfb-run -n {xserver port} python {script}
{start_test} {num tests} {start time} {accelerator}"
server = env.host string,

&' .format (

xserver port = xserver port,

code dir = env.code dir,

script = os.path.join(env.code dir, 'run many.py'),

start test = start test + i,

num_tests = min(env.workers per server-i, env.worker chunk size),
start_time = env.start time,

accelerator = env.accelerator,

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012
))

xserver_port += 1

wun

with api.cd(env.code dir):

api.run('DISPLAY=:99 screen -d -m -S run many xvfb-run {script} {start test} {num tests}
{start time}'.format (
script = os.path.join(env.code dir, 'run many.py'),
start test = start test,
num_tests = env.workers per server,
start time = env.start time,
))
@api.task

def collect logs():

[IRIRT]

wun

pass

@Qapi.task
def monitor():

wun

Monitor summary

wun

with hide ('running', 'stderr', 'status', 'user',6 'aborts'):

print 'Waiting to start: ',
api.run("grep -i 'Waiting at initial time point' /tmp/nctest/log/* | wc -1")

print 'Started tests: ',
api.run("grep -i 'Question 1$' /tmp/nctest/log/* | wc -1")

print 'Completed tests: ',
api.run("grep -i 'Test Complete' /tmp/nctest/log/* | wc -1")

print 'Exited tests: ',
api.run("grep -i 'Exiting$' /tmp/nctest/log/* | wc -1")

Qapi.task
def monitor ram():

[IRIRT]

Monitor ram

[IRIR1]

with hide ('running', 'stderr', 'status', 'user',6 'aborts'):

print 'RAM usage: ',
api.run("free -go")

@api.task
def monitor questions():

wun

Monitor progress through test questions

wun

with hide ('running', 'stderr', 'status', 'user',6 'aborts'):

print 'Question 1: ',

16 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

api.run("grep -i 'Question 1$' /tmp/nctest/log/* | wc -1")
print 'Question 2: ',

api.run("grep -i 'Question 2$' /tmp/nctest/log/* | wc -1")
print 'Question 3: ',

api.run("grep -i 'Question 3$' /tmp/nctest/log/* | wc -1")
print 'Question 4: ',

api.run("grep -i 'Question 4$' /tmp/nctest/log/* | wc -1")
print 'Question 5: ',

api.run("grep -i 'Question 5$' /tmp/nctest/log/* | wc -1")
print 'Question 6: ',

api.run("grep -i 'Question 6$' /tmp/nctest/log/* | wc -1")
print 'Question 7: ',

api.run("grep -i 'Question 7$' /tmp/nctest/log/* | wc -1")
print 'Question 8: ',

api.run("grep -i 'Question 8$' /tmp/nctest/log/* | wc -1")
print 'Question 9: ',

api.run("grep -i 'Question 9$' /tmp/nctest/log/* | wc -1")
print 'Question 10: ',

api.run("grep -i 'Question 10$' /tmp/nctest/log/* | wc -1")
print 'Question 11: ',

api.run("grep -i 'Question 11$' /tmp/nctest/log/* | wc -1")
print 'Question 12: ',

api.run("grep -i 'Question 12$' /tmp/nctest/log/* | wc -1")
print 'Question 13: ',

api.run("grep -i 'Question 13$' /tmp/nctest/log/* | wc -1")
print 'Question 14: ',

api.run("grep -i 'Question 14$' /tmp/nctest/log/* | wc -1")
print 'Question 15: ',

api.run("grep -i 'Question 15$' /tmp/nctest/log/* | wc -1")
print 'Question 16: ',

api.run("grep -i 'Question 16$' /tmp/nctest/log/* | wc -1")
print 'Question 17: ',

api.run("grep -i 'Question 17$' /tmp/nctest/log/* | wc -1")
print 'Question 18: ',

api.run("grep -i 'Question 18$' /tmp/nctest/log/* | wc -1")
print 'Question 19: ',

api.run("grep -i 'Question 19$' /tmp/nctest/log/* | wc -1")
print 'Question 20: ',

api.run("grep -i 'Question 20$' /tmp/nctest/log/* | wc -1")
print 'Question 21: ',

api.run("grep -i 'Question 21$' /tmp/nctest/log/* | wc -1")
print 'Question 22: ',

api.run("grep -i 'Question 22$' /tmp/nctest/log/* | wc -1")
print 'Question 23: ',

api.run("grep -i 'Question 23$' /tmp/nctest/log/* | wc -1")
print 'Question 24: ',

api.run("grep -i 'Question 24$' /tmp/nctest/log/* | wc -1")
print 'Question 25: ',

api.run("grep -i 'Question 25$' /tmp/nctest/log/* | wc -1")
print 'Question 26: ',

api.run("grep -i 'Question 26$' /tmp/nctest/log/* | wc -1")
print 'Question 27: ',

api.run("grep -i 'Question 27$' /tmp/nctest/log/* | wc -1")
print 'Question 28: ',

api.run("grep -i 'Question 28$' /tmp/nctest/log/* | wc -1")
print 'Question 29: ',

api.run("grep -i 'Question 29$' /tmp/nctest/log/* | wc -1")
print 'Question 30: ',

api.run("grep -i 'Question 30$' /tmp/nctest/log/* | wc -1")
print 'Question 31: ',

17 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

api.run("grep -i 'Question 31$' /tmp/nctest/log/* | wc -1")
print 'Question 32: ',

api.run("grep -i 'Question 32$' /tmp/nctest/log/* | wc -1")
print 'Question 33: ',

api.run("grep -i 'Question 33$' /tmp/nctest/log/* | wc -1")
print 'Question 34: ',

api.run("grep -i 'Question 34$' /tmp/nctest/log/* | wc -1")
print 'Question 35: ',

api.run("grep -i 'Question 35$%$' /tmp/nctest/log/* | wc -1")
print 'Question 36: ',

api.run("grep -i 'Question 36$' /tmp/nctest/log/* | wc -1")
print 'Question 37: ',

api.run("grep -i 'Question 37$' /tmp/nctest/log/* | wc -1")
print 'Question 38: ',

api.run("grep -i 'Question 38$' /tmp/nctest/log/* | wc -1")
print 'Question 39: ',

api.run("grep -i 'Question 39$' /tmp/nctest/log/* | wc -1")
print 'Question 40: ',

api.run("grep -i 'Question 40$' /tmp/nctest/log/* | wc -1")
print 'Question 41: ',

api.run("grep -i 'Question 41$' /tmp/nctest/log/* | wc -1")
print 'Question 42: ',

api.run("grep -i 'Question 42$' /tmp/nctest/log/* | wc -1")
print 'Question 43: ',

api.run("grep -i 'Question 43$' /tmp/nctest/log/* | wc -1")
print 'Question 44: ',

api.run("grep -i 'Question 44$' /tmp/nctest/log/* | wc -1")
print 'Question 45: ',

api.run("grep -i 'Question 45$' /tmp/nctest/log/* | wc -1")
print 'Question 46: ',

api.run("grep -i 'Question 46$' /tmp/nctest/log/* | wc -1")
print 'Question 47: ',

api.run("grep -i 'Question 47$' /tmp/nctest/log/* | wc -1")
print 'Question 48: ',

api.run("grep -i 'Question 48$' /tmp/nctest/log/* | wc -1")
print 'Question 49: ',

api.run("grep -i 'Question 49$' /tmp/nctest/log/* | wc -1")
print 'Question 50: ',

api.run("grep -i 'Question 50$' /tmp/nctest/log/* | wc -1")
print 'Question 51: ',

api.run("grep -i 'Question 51$' /tmp/nctest/log/* | wc -1")
print 'Question 52: ',

api.run("grep -i 'Question 52$' /tmp/nctest/log/* | wc -1")
print 'Question 53: ',

api.run("grep -i 'Question 53$' /tmp/nctest/log/* | wc -1")
print 'Question 54: ',

api.run("grep -i 'Question 54$' /tmp/nctest/log/* | wc -1")
print 'Question 55: ',

api.run("grep -i 'Question 55$' /tmp/nctest/log/* | wc -1")
print 'Question 56: ',

api.run("grep -i 'Question 56$' /tmp/nctest/log/* | wc -1")
print 'Question 57: ',

api.run("grep -i 'Question 57$' /tmp/nctest/log/* | wc -1")
print 'Complete: ',

api.run("grep -i 'Test Complete' /tmp/nctest/log/* | wc -1")
print 'Exited: ',

api.run("grep -i 'Exiting$' /tmp/nctest/log/* | wc -1")

@Qapi.task
def copy logs():

18 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012
with api.settings(warn_only=True) :
api.run("mkdir remote logs")

api.get ("/tmp/nctest/log/*", "remote logs/% (path)s")
@api.task
@parallel
def kill():

wun

Kills all firefox instances

with api.settings(warn_only=True) :
api.run("killall firefox")
api.run("killall Xvfb")
api.run("killall python")

run_many.py

import sys

import os.path

import random

from subprocess import Popen
from time import sleep, time

"

if name == "_main_":
if len(sys.argv) == 5:
start time = time() + float(sys.argv[3])

else:
print "Usage: %s <start test number 1-10000> <number of tests to run> <start time in

seconds from now> <accelerator>" % sys.argv[0]
sys.exit (-1)

nctest script = os.path.abspath(os.path.join(os.path.abspath(_ file), "..", "nctest.py"))

start test num = int(sys.argv[l])
nprocesses = int(sys.argv[2])
accelerator = int(sys.argv([4])

processes = []
try:
for i in xrange (nprocesses) :

arguments = ['python', nctest script, str(start test num+i), str(start time +
(random.random () * 20)), str(accelerator)]

process = Popen (arguments)

processes.append (process)

sleep(20)

Start processes and wait
for process in processes:
process.wait ()

Always kill all processes when finished
finally:
for process in processes:
try:
if process.poll() is None:
process.kill ()
except Exception as e:

19 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results
print
print "Error in killing:"
print e

nctest.py

import time, time, sys, os, random
import logging as log
import os

from selenium import webdriver
from selenium.webdriver.support.ui import Select

11/1/2012

from selenium.common.exceptions import NoSuchElementException, StaleElementReferenceException,

WebDriverException

from selenium.webdriver.firefox.firefox binary import FirefoxBinary
from selenium.webdriver.firefox.firefox profile import FirefoxProfile
from selenium.webdriver.common import utils

class NctestSelenium(object) :

def init (self, username, password, testnum, accelerator, start time=None,

self.username = username
self.password = password
self.testnum = testnum
self.use xvfb = use_ xvfb
self.accelerator = accelerator

if start time:

self.target_time = start_time
else:

self.target time = time.time ()

find amount of time between tests

if self.accelerator ==
self.time point delay = 0

else:

get the delay between questions based on CUACS test duration

frequency distribution
(57 is the number of questions)
self.delay index = random.random ()

if (self.delay index >= 0) and (self.delay index < 0.0679):

self.time point delay = (30*60 + 35%*60)/(2*57)

elif (self.delay index >= 0.0679) and (self.delay index <
self.time point delay = (35*60 + 40%60)/(2*57)

elif (self.delay index >= 0.1509) and (self.delay index <
self.time point delay = (40%*60 + 45*60)/(2*57)

elif (self.delay index >= 0.2386) and (self.delay index <
self.time point delay = (45*60 + 50*60)/(2*57)

elif (self.delay index >= 0.3198) and (self.delay index <
self.time point delay = (50%*60 + 55*60)/ (2*57)

elif (self.delay index >= 0.3806) and (self.delay index <
self.time point delay = (55*60 + 60*60) / (2*57)

elif (self.delay index >= 0.4579) and (self.delay index <

self.time point delay = (60*60 + 65*60)/(2*57)
elif (self.delay index >= 0.5269) and (self.delay index <
self.time point delay = (65*60 + 70%60)/(2*57)

elif (self.delay_index >= 0.5930) and (self.delay index <

0.

1509) :

.2386) :

.3198) :

.3806) :

.4579) :

.5269) :

.5930) :

.6510) :

use xvfb=False) :

20 of 35

self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point_delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =
elif
self.time point delay =

(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.
(self.delay index >= 0.

(self.delay index >= 0.

(7060 + 75*60)/(2*57)

6510) and (self.delay_ index
(7560 + 80*60)/(2*57)

7036) and (self.delay index
(80*60 + 85*60)/(2*57)

7482) and (self.delay index
(8560 + 90%*60)/(2*57)

7873) and (self.delay index
(90*60 + 95*60)/(2*57)

8218) and (self.delay index
(95*60 + 100*60)/(2*57)
8525) and (self.delay index
(100*60 + 105*60)/(2*57)
8754) and (self.delay index
(105*60 + 110*60)/(2*57)
8950) and (self.delay_ index
(110*60 + 115*60)/(2*57)
9138) and (self.delay index
(115*60 + 120*60)/(2*57)
9290) and (self.delay index
(120*60 + 125*60)/(2*57)
9428) and (self.delay index
(125*60 + 130%*60)/(2*57)
9545) and (self.delay index
(130*60 + 135*60)/(2*57)
9636) and (self.delay index
(135*60 + 140*60)/(2*57)
9710) and (self.delay index
(140*60 + 145*60)/(2*57)
9776) and (self.delay index
(145*60 + 150%60)/(2*57)
9834) and (self.delay index
(150*60 + 155%60)/(2*57)
9884) and (self.delay index
(155*%60 + 160%60)/(2*57)
9921) and (self.delay index
(160*60 + 165*60)/(2*57)
9949) and (self.delay index
(165*60 + 170*60)/(2*57)
9971) and (self.delay index
(170*60 + 175*60)/(2*57)
9987) and (self.delay_ index
(175*60 + 180%*60)/(2*57)

NCTest Capacity Testing: Architecture, Methodology, and Results

<

<

0

.7036) :

.7482) :

.7873) :

.8218) :

.8525) :

.8754) :

.8950) :

.9138) :

.9290) :

.9428)

.9545) :

.9636) :

.9710) :

.9776) :

.9834) :

.9884) :

.9921)

.9949) :

.9971) :

.9987) :

.0000) :

11/1/2012

self.time point delay = self.time point delay / float (self.accelerator)

self.log("self.target time = "+str(self.target time))
self.log("self.time point delay = "+str(self.time point delay))

if self.use xvfb:
from pyvirtualdisplay import Display
size=(800,

self.display = Display(visible=0, 600)

self.display.start ()
self.log("Loading Browser")
self.driver = self.load driver()
self.base_url = "https://data.ncsu.edu"
#self.base url = "https://152.1.168.115:8080"

def load driver (self):

21 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results

def

def

def

profile = FirefoxProfile("firefox profile/")
binary NctestFirefoxBinary(wait time=300)
driver = webdriver.Firefox(profile, firefox binary=binary)

self.log("Firefox PID: %s" % binary.process.pid)

LIRIR1]

driver = webdriver.Chrome (executable path="./chromedriver")

wun

wun

11/1/2012

driver = webdriver.Opera (executable path="../bin/selenium-server-standalone-2.25.0.jar")

wun

driver.implicitly wait (60) # Amount of time to wait for an
element to be found
return driver

load_page (self, page):

Use javascript instead of driver.get to load the page

Doing it this way fixes an odd case that prevents the "Start Test"

button from being pressed.

self.driver.execute script('window.location.href = "%s"' % page)

#self.driver.get (page)

log(self, *args):

#print self.username, self.password, self.testnum, '::', ' '.join(args)

log.debug (' '.join(args))

driver command(self, xpath, command, *args):
T

Runs driver.find element by xpath (xpath) .<command>(*args), with added

error and retry support.

Specially supports the select by visible text by wrapping
find element by xpath with Select().

T

MAX RETRIES = 10

SLEEP TIME = 1

#self.log(command, xpath)

retry count = 0
while True:

try:
if command == "select by visible text":

element = Select(self.driver.find element by xpath (xpath))

else:
element = self.driver.find element by xpath (xpath)
return getattr (element, command) (*args)

#except StaleElementReferenceException, WebDriverException:

except Exception as e:
#self.log(str(e))
if retry count >= MAX RETRIES:
raise

self.log("Error running command! Retrying in 1 second.")

retry count += 1

22 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

def

def

time.sleep (SLEEP TIME)

time point (self):
self.target_time += self.time point delay
t = time.time ()
if t < self.target time:
delay = self.target time - t

self.log("Waiting for %s s" % delay)
time.sleep (delay)

run (self) :

self.log("Loading Initial Page")
self.load page("%s/nctest/NCTest.html#testAdminLogin" % self.base url)

Intentional wait to put time between firefox starting and test
starting. This will hopefully reduce errors.
time.sleep (10)

Click "Caution: You're using Linux"
self.driver command("//div/div/div/div/div/div/div/div/table/tbody/tr/td/div", "click")

Login Page

v

self.driver command("//input[@type='password']", "send keys", self.password)
self.driver command("//tr[8]/td/table/tbody/tr/td[2]/div", "click")

self.driver command("//select", "select by visible text", "Science Grade 5 Field Test")
self.driver command (" (//input[@type="text'])[6]", "clear")
self.driver command (" (//input[@type='text'])[6]", "send keys", self.username)
self.driver command("//input[@type='password']", "clear")

(

(

Select Test Page
self.driver command("//select", "select by visible text", "student, test (%s)" %

self.testnum)

self.driver command("//fieldset/div/table/tbody/tr/td[2]/div", "click")

This page has a loading dialog that says:

#

#

Please Wait.

The test is loading...

#

If we try to push the start test button before this goes away, it
will fail silently. Instead we wait until the dialog is gone by
searching for the dialog's text once a second.

self.log("Waiting for loading dialog to dissapear")

while True:

html element = self.driver.find element by tag name ("html")
page text = html element.text
if page text.find("Please Wait") == -1:
self.log("Dialog is gone!")
break
else:

self.log("Dialog is present, waiting...")
time.sleep (1)

Start Test Button
self.log("Pressing Start Button")
self.driver command("//div[4]/div/div/div/div/div/div", "click")

Tutorial Pages
self.log("Starting Tutorial")

23 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results

try:

self

self.

self

self.

self

self.
self.

self

self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.

self

self.

self

self.

Bu

self.
self.
self.

Qu
self.
self.

self.
self.

Qu

self.

self.
self.

self.

Qu
self

self.driver command (" (//button[@type='button']) [2]", "click")
#self.driver command("//div[4]/div/div/div/div/div/div", "click")
except NoSuchElementException:

Try clicking the "Start Test" button again.

If it didn't work

the first time, then we're on the previous page, which is why we

couldn't find this button.

self.driver command (" (//button[@type="button'

1) [2]", "click")

#self.driver command("//div([4]/div/div/div/div/div/div", "click")

self.driver command (" (//button[@type='button'])[2]", "click")

.driver command (" (//button[@type='button'])
driver command (" (//button[@type='button'])
.driver command (" (//button[@type='button'])
driver command (" (//button[@type='button'])
.driver command (" (//button[@type='button'])
driver command (" (//button[@type='button'])
driver command (" (//button[@type='button'])
.driver command (" (//button[@type='button'])
driver command (" (//button[@type='button'])
driver command (" (//button[@type="button'])
driver command (" (//button[@type='button'])
driver command (" (//button[@type="button'])
driver command (" (//button[@type="button'])
driver command (" (//button[@type="button'])
driver command (" (//button[@type='button'])
driver command (" (//button[@type='button'])
driver command (" (//button[@type="button'])
driver command (" (//button[@type='button'])
driver command (" (//button[@type='button'])
.driver command (" (//button[@type='button'])
driver command (" (//button[@type="button'])
.driver command (" (//button[@type="button'])
driver command (" (//button[@type='button'])

tton "Close Tutorial and Begin Assesment"
log("Waiting at initial time point!")

time point ()

driver command (" (//button[@type="button'])

estion 1
log("Question 1")

[21", "click")
[21", "click")
[21", "click")
[21", "click")
[2]1", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[21", "click")
[3]1", "click")

"click™)

driver command("//td/table/tbody/tr/td[4]/div",

driver command("//td[5]/div", "click")

time point ()

estion 2
log ("Question 2")

driver command("//tr[4]/td/table/tbody/tr/td[4

driver command("//td[5]/div", "click")
tlme_p01nt()

estion 3
.log ("Question 3")

]/div", "click")

self.driver command("//tr([5]/td/table/tbody/tr/td[4]/div", "click")

self

self.

Qu

.driver command("//td[5]/div", "click")
time point ()

estion 4

11/1/2012

24 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

self.log("Question 4")
self.driver command ("//tr[3]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 5

self.log("Question 5")

self.driver command("//td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 6

self.log("Question 6")

self.driver command("//tr[5]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 7

self.log("Question 7")

self.driver command("//td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 8

Drag and drop style. We Jjust hit next.
self.log("Question 8")

self.driver command("//td[5]/div", "click")

self.time point ()

Question 9

self.log("Question 9")

self.driver command("//tr[4]/td/table/tbody/tr/td[4]/div", "click")
self.driver command ("//td[5]/div", "click")

self.time point ()

Question 10

self.log("Question 10")

self.driver command("//td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 11

self.log("Question 11")

self.driver command("//tr([4]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 12

self.log("Question 12"M)

self.driver command("//tr[5]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 13

Select style question

self.log("Question 13")

self.driver command("//div[6]/div/div/div/div[3]", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

25 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

Question 14

self.log("Question 14")

self.driver command("//tr[5]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 15

self.log("Question 15")

self.driver command("//tr([4]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 16

self.log("Question 16")

self.driver command("//td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 17

self.log("Question 17")

self.driver command("//td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 18

self.log("Question 18")

self.driver command("//tr[5]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 19

self.log("Question 19")

self.driver command("//td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 20
Select style question
self.log("Question 20")

This used to work for this style select question, but doesn't anymore
#self.driver command("//tr([6]/td/table/tbody/tr/td/div", "click")
#self.driver command("//tr([6]/td/table/tbody/tr/td/div/div", "click")
#self.driver command("//td[5]/div", "click")

self.driver command("//div[2]/div/div/div/table/tbody/tr[2]/td/table/tbody/tr/td/
div", "click"™)

self.driver command("//td/table/tbody/tr/td/div/div", "click")

self.driver command("//td[5]/div", "click")

self.time point ()

Question 21

self.log("Question 21")

self.driver command("//tr[5]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 22
self.log("Question 22")

26 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012
self.driver command("//td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")
self.time point ()

Question 23

self.log("Question 23")

self.driver command ("//tr[5]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 24

self.log("Question 24")

self.driver command("//td/table/tbody/tr/td[4]/div", "click")
self.driver command ("//td[5]/div", "click")

self.time point ()

Question 25
Input style question
self.log("Question 25")

self.driver command (" (//input[@type="text'])[8]", "clear")
self.driver command (" (//input[@type='text'])[8]", "send keys", "3141592")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 26

self.log("Question 26")

self.driver command("//tr[5]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 27

self.log("Question 27")

self.driver command("//td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 28

self.log("Question 28")

self.driver command("//tr([5]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 29

self.log("Question 29")

self.driver command("//tr([3]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 30

self.log("Question 30")

self.driver command("//td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 31

self.log("Question 31")

self.driver command("//tr[5]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

27 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

Question 32

self.log("Question 32"M)

self.driver command("//tr[4]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 33

Select style question

self.log("Question 33M)

self.driver command("//div[6]/div/div/div/div[3]", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 34

self.log("Question 34")

self.driver command("//td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 35

self.log("Question 35")

self.driver command("//tr[4]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 36

self.log("Question 36")

self.driver command("//tr[5]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 37

self.log("Question 37")

self.driver command("//tr[4]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 38

self.log("Question 38")

self.driver command ("//tr[3]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 39

Drag and drop style. We just hit next.
self.log("Question 39")

self.driver command("//td[5]/div", "click")
self.time point ()

Question 40

self.log("Question 40")

self.driver command("//tr([5]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 41

self.log("Question 41")

self.driver command("//tr([3]/td/table/tbody/tr/td[4]/div", "click")
self.driver command ("//td[5]/div", "click")

self.time point ()

28 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

Question 42

self.log("Question 42")

self.driver command("//tr([5]/td/table/tbody/tr", "click")
self.driver command("//tr([5]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 43

self.log("Question 43")

self.driver command("//td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 44

self.log("Question 44")

self.driver command("//tr[5]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 45

self.log("Question 45")

self.driver command("//td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 46

self.log("Question 46")

self.driver command("//tr[5]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 47

self.log("Question 47")

self.driver command ("//tr[3]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 48

Select style question

self.log("Question 48")

self.driver command("//div[2]/div/div/div/table/tbody/tr[2]/td/table/tbody/tr/td/
div", "click")

self.driver command("//td/table/tbody/tr/td/div/div", "click")

self.driver command("//td[5]/div", "click")

self.time point ()

Question 49

self.log("Question 49"M)

self.driver command("//tr[3]/td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 50

self.log("Question 50")

self.driver command("//td/table/tbody/tr/td[4]/div", "click")
self.driver command("//td[5]/div", "click")

self.time point ()

Question 51

29 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results

def

def

self.log("Question 51")
self.driver command("//tr[3]/td/table/tbody/tr/td[4]/div",
self.driver command("//td[5]/div", "click")

self.time point ()

Question 52

self.log("Question 52")

self.driver command("//tr[5]/td/table/tbody/tr/td[4]/div",
self.driver command("//td[5]/div", "click")

self.time point ()

Question 53

self.log("Question 53")

self.driver command("//tr([4]/td/table/tbody/tr/td[4]/div",
self.driver command("//td[5]/div", "click")

self.time point ()

Question 54

self.log("Question 54")

self.driver command("//tr[3]/td/table/tbody/tr/td[4]/div",
self.driver command("//td[5]/div", "click")

self.time point ()

Question 55

self.log("Question 55")

self.driver command("//tr([4]/td/table/tbody/tr/td[4]/div",
self.driver command("//td[5]/div", "click")

self.time point ()

Question 56

self.log("Question 56")

self.driver command("//tr([4]/td/table/tbody/tr/td[4]/div",
self.driver command ("//td[5]/div", "click")

self.time point ()

Question 57

self.log("Question 57")

self.driver command("//tr[3]/td/table/tbody/tr/td[4]/div",
self.driver command("//td[5]/div", "click")

self.time point ()

End Test Button
#import ipdb; ipdb.set trace() #XXX

#self.driver command("//div/div/div[2]/div/div/table/tbody/tr/td/div", "click")

Confirm End Test

#self.driver command("//div([2]/div/table/tbody/tr/td[2]/div",

self.log("Test Complete!")

is_element present(self, how, what):

try: self.driver.find element (by=how, value=what)
except NoSuchElementException, e: return False
return True

finish (self):

self.driver.quit ()

if self.use xvfb:
self.display.stop()

"click")

"click™)

"click")

"click")

"click™)

"click")

"click™)

"click")

11/1/2012

30 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results
class NctestWebkit (NctestSelenium) :

def load driver (self):
import webkit
driver = webkit.WebkitBrowser (gui=True)
return driver

def load page(self, page):
print "GETTING", page
self.driver.get (page)

def driver command(self, xpath, command, *args):
self.log(command, xpath)

if command == "send keys" or command == "select by visible text":
self.driver.fill (xpath, args[0]

elif command == "clear":
self.driver.fill (xpath, "")

else:
getattr(self.driver, command) (xpath)

self.driver.screenshot ("screenshot.jpg")
class NctestFirefoxBinary (FirefoxBinary) :

'"'"Firefox binary that waits longer for firefox to start.

The wait isn't long enough if you see this error:
selenium.common.exceptions.WebDriverException: Message:
'Can\'t load the profile. Profile Dir: /tmp/tmpDdPGNO
Firefox output: Xlib: extension "RANDR" missing on display
":99" \n*** LOG addons.xpi: startup\n*** LOG addons.xpi:

checkForChanges\n*** LOG addons.xpi: No changes found\n'

This binary also assumes the profile exists and doesn't need to be created.

def init (self, *args, **kwargs):
self.wait time = kwargs.pop("wait time", 30)
super (NctestFirefoxBinary, self). 1init (*args, **kwargs)

def wailt _until connectable(self):
'"'Blocks until the extension is connectable in the firefox.

Same as Firefox. wait until connectable, but waits self.wait time
instead of 30 seconds.

count = 0
while not utils.is connectable(self.profile.port):
if self.process.poll() is not None:
Browser has exited
raise WebDriverException ("The browser appears to have exited "

"before we could connect. The output was: %$s" %
self. get firefox output())

11/1/2012

31 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012
if count == self.wait_time: # Change was made here
self.kill ()
raise WebDriverException("Can't load the profile. Profile "
"Dir: %s Firefox output: %s" % (
self.profile.path, self. get firefox output()))
count += 1
time.sleep (1)
return True
def extract and check(self, profile, no focus_so name, x86, amd64):
paths = [x86, amdé64]
built path = ""
for path in paths:
library path = os.path.join(profile.path, path)
This commented out so it Jjust uses the existing profile
#os.makedirs (library path)
#import shutil
#shutil.copy (os.path.join(os.path.dirname(file), path,
self.NO _FOCUS_LIBRARY NAME),
library path)
built path += library path + ":"
return built path
def credentials (userNum) :
Takes an integer from 0-9999, and returns a namedtuple of username,
password, testnum.
if (userNum > 0) and (userNum <= 10000) :
userids = { 1:294, 2:319, 3:349, 4:397, 5:455, 6:587, 7:701, 8:704,
9:833, 10:877,
11:894, 12:934, 13:950, 14:961, 15:1009, 16:1011, 17:1015, 18:1020,
19:1042, 20:1057,
21:1110, 22:1293, 23:1320, 24:1350, 25:1454, 26:1463, 27:1478, 28:1500,
29:1508, 30:1550,
31:1557, 32:1588, 33:1615, 34:1625, 35:1626, 36:1653, 37:1690, 38:1718,
39:1742, 40:1757,
41:1834, 42:1861, 43:1879, 44:1885, 45:1919, 46:1922, 47:1965, 48:1972,
49:1975, 50:1998,
51:2007, 52:2009, 53:2022, 54:2039, 55:2045, 56:2048, 57:2059, 58:2062,
59:2078, 60:2085,
61:2087, 62:2088, 63:2102, 64:2112, 65:2121, 66:2129, 67:2151, 68:2152,
69:2155, 70:2157,
71:2159, 72:2162, 73:2165, 74:2169, 75:2179, 76:2180, 77:2181, 78:2182,
79:2197, 80:2202,
81:2209, 82:2222, 83:2225, 84:2226, 85:2227, 86:2228, 87:2230, 88:2242,
89:2244, 90:2250,
91:2257, 92:2258, 93:2259, 94:2261, 95:2265, 96:2266, 97:2272, 98:2274,
99:2275, 100:2284}
#
userids = { 1:294, 2:319, 3:349, 4:397, 5:455, 6:587, 7:701,
8:704, 9:833, 10:877,
11:894, 12:934, 13:950, 14:961, 15:1009, 16:1011, 17:1015,
18:1020, 19:1042, 20:1057,

32 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results

#
28:1500, 29:1508,
#
38:1718, 39:1742,
#
48:1972, 49:1975,
#
58:2062, 59:2078,
#
68:2152, 69:2155,
#
78:2182, 79:2197,
#
88:2242, 89:2244,
#
98:2274, 99:2275,
#

userids = {
9:138, 10:159,
19:208, 20:213,
29:320, 30:325,
39:399, 40:449,
49:536, 50:541,
59:652, 60:672,
69:765, 70:775,
79:865, 80:878,
89:947, 90:956,
98:1129, 99:1140,
108:1193, 109:1195,
118:1327, 119:1336,
128:1454, 129:1468,
138:1602, 139:1604,
148:1690, 149:1695,
158:1746, 159:1757,
168:1793, 169:1797,
178:1896, 179:1903,
188:2021, 189:2022,
198:2108, 199:2112,
208:2216, 209:2224,

21:1110,
30:1550,
31:1557,
40:1757,
41:1834,
50:1998,
51:2007,
60:2085,
61:2087,
70:2157,
71:2159,
80:2202,
81:2209,
90:2250,
91:2257,
100:2284,
101:2308,

1:5,

11:178,

21:

31:329,

41:467,

51:545,

61:679,

71:778,

81:884,

91:968,
100:1144,
101:1147,
110:1198,
111:1212,
120:1351,
121:1360,
130:1474,
131:1475,
140:1606,
141:1612,
150:1698,
151:1712,
160:1760,
161:1762,
170:1805,
171:1807,
180:1937,
181:1969,
190:2028,
191:2029,
200:2116,
201:2117,
210:2228,

22:1293,
32:1588,
42:1861,
52:2009,
62:2088,
72:2162,
82:2222,
92:2258,
102:2313,
2:49,
12:181,
22:244,
32:340,
42:474,
52:551,
62:
72
82:885,
: 980,
:1155,
:1213,
:1364,
11487,
:1619,
11713,
:1768,
:1824,
:1978,
:2039,

12123,

23:1320,
33:1615,
43:1879,
53:2022,
63:2102,
73:2165,
83:2225,
93:2259,
103:2331,
3:72,
13:183,
23:246,
33:355,
43:488,
53:563,
63:726,
73:794,
83:
93:1038,
103:1161,
113:1219,
123:1387,
133:1498,
143:1630,
153:1722,
163:1772,
173:1828,
183:1980,
193:2043,

203:2149,

24:1350,
34:1625,
44:1885,
54:2039,
64:2112,
74:2169,
84:2226,
94:2261,
104:2338,
14:
24:
34:
44:
54:572,
64:
74:
84:906,

:1045,
:1169,
:1220,
:1394,
:1504,
11648,
:1723,
:1782,
:1847,
:1984,
194:2044,

204:2157,

25:1454,
35:1626,
45:1919,
55:2045,
65:2121,
75:2179,
85:22217,
95:2265,
105:2352}
: 95,

15:192,
25:269,
35:362,
45:502,
55:616,
65:742,
75:820,
85:
95:1077,
1177,
:1225,
:1405,
:1549,
:1651,
:1729,
:1784,
:1853,
:1987,
:2048,

:2170,

26:

36:

46:

56:

66:

76:

86:

96:

16:

26:

36:

46

56:

66:

76:

86:

96:

106:

116:

126:

136:

146:

156:

166:

176:

186:

196:

206:

2285,

1653,

1922,

2048,

2129,

2180,

2228,

2266,

: 96,

198,

273,

369,

1520,

618,

746,

823,

919,

1097,

1184,

1228,

1406,

1566,

1683,

1731,

1788,

1856,

2001,

2075,

2183,

27:

37:

47:

57:

67:

77z

87:

97:

17:

27:

37:

47

57:

67:

77:

87:

197:

207:

11/1/2012

1478,

1690,

1965,

2059,

2151,

2181,

2230,

2272,

288,

390,

1529,

632,

753,

840,

924,

11116,

11189,

11321,

:1416,

:1575,

11688,

11744,

11791,

11871,

:2010,

2106,

2198,

18:

28:

38:

48

58:

68:

78:

88:

397,

1533,

648,
760,
850,

938,

33 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012
211:2229, 212:2243, 213:2244, 214:2251, 215:2270, 216:2283, 217:2285,
218:2308, 219:2313, 220:2331,
221:2338, 222:2352, 223:2358, 224:2369, 225:2379, 226:2388, 227:2389,
228:2448, 229:2449, 230:2457,
231:2471, 232:2482, 233:2496, 234:2499, 235:2500, 236:2511, 237:2519,
238:2526, 239:2551, 240:2562,
241:2564, 242:2566, 243:2570, 244:2575, 245:2588, 246:2593, 247:2595,
248:2604}

userid = userids|[((userNum-1) / 100) + 1]
studentOffset = userNum - (((userNum/100))*100)
if studentOffset ==

studentNum = userid * 100

else:
studentNum = studentOffset + ((userid - 1) * 100)
#studentStr = 'student, test (' + str(studentNum) + ')'
creds = {'userid':str (userid), 'password':str (userid), 'testnum':studentNum}
else:
creds = {'userid':'', 'password':'', 'testnum':''}

return creds

if name == "_main_ ":
if len(sys.argv) == 4:
start time = float (sys.argv[2])
else:

print "Usage: python %$s <testnum from 1-10000> <start time in seconds since epoch>
°

<accelerator>" % sys.argv[0]
sys.exit (-1)

test index = int(sys.argv([1l])
accelerator = float(sys.argv[3])
creds = credentials (test_index)
username = creds['userid']
password = creds|['password']
testnum = creds|['testnum')]
logfile = 'log/%s.log' % test index
try:
os.remove (logfile)
except OSError:
pass # File not found
try:
os.mkdir ('log"')
except OSError:
pass # Directory already exists
log_format = "% (asctime)s : " + str(test _index) + " : % (message)s"
log.basicConfig(filename=logfile, level=1log.DEBUG, format=log format)
log.getLogger ('selenium.webdriver.remote.remote connection').setLevel (1log.ERROR)

Set random seed
random.seed (test index)

try:

test = NctestSelenium(username, password, testnum, accelerator, start time)
#test = NctestWebkit (username, password, testnum, start time)

34 of 35

NCTest Capacity Testing: Architecture, Methodology, and Results 11/1/2012

test.run()

Log all tracebacks
except Exception as e:
import traceback

ei = sys.exc_info()
try:

tb = traceback.format exception(ei[0], ei[l], ei[2])
finally:

del ei

for line in tb:
log.error (line)
raise

finally:
log.info ('Exiting')
try:
test.finish ()
except Exception:
pass

35 of 35

